High-density genetic linkage map construction by F2 populations and QTL analysis of early-maturity traits in upland cotton (Gossypium hirsutum L.)
نویسندگان
چکیده
Due to China's rapidly increasing population, the total arable land area has dramatically decreased; as a consequence, the competition for farming land allocated for grain and cotton production has become fierce. Therefore, to overcome the existing contradiction between cotton grain and fiber production and the limited farming land, development of early-maturing cultivars is necessary. In this research, a high-density linkage map of upland cotton was constructed using genotyping by sequencing (GBS) to discover single nucleotide polymorphism (SNP) markers associated with early maturity in 170 F2 individuals derived from a cross between LU28 and ZHONG213. The high-density genetic map, which was composed of 3978 SNP markers across the 26 cotton chromosomes, spanned 2480 cM with an average genetic distance of 0.62 cM. Collinearity analysis showed that the genetic map was of high quality and accurate and agreed well with the Gossypium hirsutum reference genome. Based on this high-density linkage map, QTL analysis was performed on cotton early-maturity traits, including FT, FBP, WGP, NFFB, HNFFB and PH. A total 47 QTLs for the six traits were detected; each of these QTLs explained between 2.61% and 32.57% of the observed phenotypic variation. A major region controlling early-maturity traits in Gossypium hirsutum was identified for FT, FBP, WGP, NFFB and HNFFB on chromosome D03. QTL analyses revealed that phenotypic variation explained (PVE) ranged from 10.42% to 32.57%. Two potential candidate genes, Gh_D03G0885 and Gh_D03G0922, were predicted in a stable QTL region and had higher expression levels in the early-maturity variety ZHONG213 than in the late-maturity variety LU28. However, further evidence is required for functional validation. This study could provide useful information for the dissection of early-maturity traits and guide valuable genetic loci for molecular-assisted selection (MAS) in cotton breeding.
منابع مشابه
QTL analysis for early-maturing traits in cotton using two upland cotton (Gossypium hirsutum L.) crosses
Making use of the markers linked closely to QTL for early-maturing traits for MAS (Marker-assisted selection) is an effective method for the simultaneous improvement of early maturity and other properties in cotton. In this study, two F2 populations and their F2:3 families were generated from the two upland cotton (Gossypium hirsutum L.) crosses, Baimian2 × TM-1 and Baimian2 × CIR12. QTL for ea...
متن کاملQuantitative Trait Loci Associated with Agronomic and Fiber Traits of Upland Cotton
Identificationofquantitative traitloci (QTLs) for agronomic and fiber traits in upland cotton (Gossypium hirsutum L.) and their allelic association with molecular markers would be useful in cotton breeding. We used the mixed model approach of Zhu and Weir (1998) to analyze for QTLs associated with 19 agronomic and fiber traits across 96 F 2-derived families from the cross of two cotton lines, M...
متن کاملInsights Into Upland Cotton (Gossypium hirsutum L.) Genetic Recombination Based on 3 High-Density Single-Nucleotide Polymorphism and a Consensus Map Developed Independently With Common Parents
High-density linkage maps are vital to supporting the correct placement of scaffolds and gene sequences on chromosomes and fundamental to contemporary organismal research and scientific approaches to genetic improvement, especially in paleopolyploids with exceptionally complex genomes, eg, upland cotton (Gossypium hirsutum L., "2n = 52"). Three independently developed intraspecific upland mappi...
متن کاملQTL mapping for physiology, yield and plant architecture traits in cotton (Gossypium hirsutum L.) grown under well-watered versus water-stress conditions
Increasing scarcity of irrigation water is a major threat to sustainable production of cotton (Gossypium hirsutum L.). Identifying genomic regions contributing to abiotic stress tolerance will help develop cotton cultivars suitable for water-limited regions through molecular marker-assisted breeding. A molecular mapping F2 population was derived from an intraspecific cross of the drought sensit...
متن کاملConstruction of Genetic Linkage Map and QTL Analysis for Fiber Traits in Diploid Cotton (Gossypium arboreum x Gossypium herbaceum)
Diploid A genome cottons are grown for their natural fiber in drought prone areas of Asia. Although they possess inferior fiber qualities to cultivated Upland and Pima cotton, their value lies in their inherent resistance to pests and diseases. Molecular linkage maps provide essential tools for plant genetic research, facilitating quantitative trait locus (QTL) mapping, marker-assisted selectio...
متن کامل